4372 M. P. DAS AND S.

Leath, ibid. 171, 725 (1968).

181,, M. Roth, Phys. Letters 31A, 440 (1970).

19y, Onedora and Y. Toyozawa, J. Phys. Soc. Japan
24, 341 (1968).

2K Freed and M. H. Cohen, Phys. Rev. B3, 3400 (1971).

AT, Matsubara and Y. Toyozawa, Progr. Theoret.
Phys. (Kyoto) 26, 739 (1961).

227 Matsubara and T. Koneyoshi, Progr. Theoret.
Phys. (Kyoto) 36, 695 (1966).

2p, L. Leath, Phys. Rev. B 2, 3078 (1970).

24T, Matsubara, Progr. Theoret. Phys. (Kyoto) 44,
1116 (1971).

25F, Yonezawa, Progr. Theoret. Phys. (Kyoto) 31, 357
(1964); F. Yonezawa and T. Matsubara, ibid. 35, 357
(1966); T. Matsubara and F. Yonezawa, ibid. 37, 1346
(1966).

%5, F. Edwards, Phil. Mag. 3, 1020 (1958).

2F. Yonezawa, Progr. Theoret. Phys. (Kyoto) 40, 734
(1969).

28p. W. Anderson, Phys. Rev. 109, 1492 (1958); Com-
ments Solid State Phys. 2, 193 (1970), and references
cited therein.

23, F. Edwards, J. Non-Cryst. Solids 4, 417 (1970).

M. H. Cohen, J. Non-Cryst. Solids 4, 391 (1970).

31E. N. Economou and M. H. Cohen, Mater. Res. Bull.

5, 577 (1970); Phys. Rev. Letters 25, 1445 (1970); E. N.
Economou, S. Kirkpatrick, M. H. Cohen, and T. P. Eg-
gartar, ibid. 25, 520 (1970).

%[, M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964) [Sov.
Phys. Usp. 7, 549 (1965)].

3N. F. Mott, Phil. Mag. 22, 1 (1970), and references
cited therein.

K. JOSHI 4

343, S. Langer, J. Math. Phys. 2, 584 (1961).

35R, Kubo, J. Phys. Soc. Japan 12, 570 (1957).

363, Hubbard, Proc. Roy. Soc. (London) A281, 401
(1964).

3D, T. Keating, Acta Met. 2, 885 (1954).

3w. B. Pearson, A Handbook of Lattice Spacing and
Structure of Metals and Alloys (Pergamon, New York,
1967), Vol. 2, p. 892.

3B, Segall, Phys. Rev. 125, 109 (1962).

4J. S. Faulkner, H. L. Davis, and H. W. Joy, Phys.
Rev. 161, 656 (1967).

4w, E. Loy, Jr. and H. Amar, Bull. Am. Phys. Soc.
16, 637 (1971).

42H., Amar and K. H. Johnson, in Optical Properties
and Electronic Structures of Metals and Alloys, edited by
F. Abelds (North-Holland, Amsterdam, 1966).

M. M. Pant and S. K. Joshi, Phys. Rev. 184, 635
(1969); 186, 675 (1969).

43, Kirkpatrick, B. Velick§, and H. Ehrenreich, Phys.
Rev. B 1, 3250 (1970).

4K. Lieberman, B. Velick§, and H. Ehrenreich, Bull.
Am. Phys. Soc. 14, 320 (1969).

46F, Herman and S. Skillman, Atomic Structure Calcu-
lations (Prentice-Hall, Englewood Cliffs, N.J., 1963).

4’M. A. Biondi and R. A. Rayne, Phys. Rev. 115, 1522
(1959).

A, H. Lettington, Phil. Mag. 11, 863 (1965).

#1. L. Isaacs and T. B. Massalski, Phys. Rev. 138,
A134 (1965).

%N. F. Berk, Phys. Rev. B 1, 1336 (1970).

'H. Shiba (unpublished).

PHYSICAL REVIEW B

VOLUME 4,

NUMBER 12 15 DECEMBER 1971

. *
Magnetoacoustic Attenuation by Bragg-Reflected Electrons

Casio R. Oré-Oré ' and Leonard Kleinman
Department of Physics, University of Texas, Austin, Texas 78712
(Received 21 June 1971)

We discuss the difficulties associated with the jellium model and the validity of the deforma-
tion-potential method of calculating magnetoacoustic attenuation in metals when the electrons
are Bragg reflected. We then calculate the attenuation of a transverse acoustic wave propa-
gating along the magnetic field in a metal whose Fermi surface consists of a free-electron sphere
truncated by the six Bragg planes of a simple-cubic Brillouin zone. The attenuation-vs-mag-
netic-field curves show considerable structure which depends strongly on the ratio K/2ky where

K is the separation between Bragg planes.

I. INTRODUCTION

The jellium theory of magnetoacoustic attenua-
tion''2 was extended to nonspherical Fermi sur-
faces by Eckstein.® She was attempting to re-
produce peaks found by Boyd and Gavenda! in the
magnetic field dependence of the attenuation of
transverse acoustic waves propagating parallel
to the magnetic field along the [100] direction in
copper. They attributed these peaks to singular-
ities in the v, =9E/8py density of states on the
Fermi surface. Eckstein chose a dumbbell-shaped

model Fermi surface with such singularities and
found a peak in the conductivity which leads to a
dip in the attenuation. Thinking this might be a
consequence of the jellium theory, which strictly
speaking could be valid only for spherical Fermi
surfaces, we recalculated® the attenuation using

a free-electron deformation-potential (FED) ap-
proximation to the exact deformation potential. "
We found, however, that the FED approximation
gave exactly Eckstein’s jellium result for her
Fermi surface and for more complicated dumbbell-
shaped Fermi surfaces gave results more compli-
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cated than the jellium theory but which were nu-
merically still almost identical to the jellium re-
sults. The use of the exact deformation potential
(which can be calculated only for a real material,
and not from a model Fermi surface) would de-
stroy the numerical agreement with the jellium
calculation but not the general agreement in the
shape of the attenuation-vs-magnetic-field curves.
In this paper we examine the effect of Bragg
reflections on the attenuation of transverse sound

waves propagating along the magnetic field direction.

We choose a Fermi surface consisting of a free-
electron sphere truncated by the six Bragg planes
of a simple-cubic Brillouin zone. [See Fig. 1(a).]
For K/2kp>1 (where K is the separation between
Bragg planes) we have simply the free-electron
sphere. For 12 K/2kp 21/V2, the electrons at the
top and bottom of the sphere are missing, the elec-
trons in the middle of the sphere are Bragg re-
flected four times in a single orbit, and the re-
maining electrons keep their free-electron orbits.
In Fig. 1(b) we show a Bragg-reflected orbit. We
shall refer to the Bragg-reflected electrons as
holes because the Bragg-reflected orbit shown in
Fig. 1(b) is identical to the hole orbit shown in
Fig. 1(c). For 1/V22K/2kp21/V3, the middle as
well as the top and bottom of the sphere lie entirely
outside the first Brillouin zone and the only re-
maining orbits are hole orbits.

Sievert® has studied Bragg-reflected orbits (open
orbits in his case) using the jellium theory. In
a Note Added in Proof he states that Blount has
pointed out the omission of the impulsive term re-
sponsible for the Bragg reflection in the force felt
by the electrons. It is not completely clear to us
what form this term should take since a Bragg re-
flection does not occur off a single plane, but
rather is the result of the interference of several
planes. Fortunately in the deformation-potential
theory this term cannot ever occur. (Remember
that the deformation potential is derived by trans-
forming to coordinates at rest in the ions.® There-
fore the electrons Bragg-reflect off stationary
planes of ions.) Another more subtle difficulty
also arises in the jellium theory. There is a
collision-drag contribution’? to the attenuation
of the form Ny m({,~ (¥)) - U¥, where U,is the
ionic velocity, (V) is the electron velocity averaged
over the free part of the Fermi surface (i.e., not
over that part consisting of Bragg planes) and
Ngg is an integral over the free part of the Fermi
surface which reduces to N, the number of con-
duction electrons, when there are no Bragg planes.
- e,,e(?} is the electronic current which is
normally very nearly equal and opposite to the
ionic current, 3=Neﬁ,- Thus when there are no
Bragg planes and N, =N, the collision-drag term
is negligible but in the present case it is not.
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Sievert® included the collision-drag term but
failed to distinguish between N and Ng. One
might also argue that 7 should be replaced by an
effective ionic current because those electrons
which are blocked by the Bragg planes from con-
tributing to the conductivity are still effective in
screening the ionic current. 10 Fortunately in the
deformation-potential method there is no ionic
current and no collision-drag term, so these
questions do not arise. It should be emphasized
that the deformation-potential theory does not
neglect these terms; they just do not enter ex-
plicitly. The deformation-potential results® for
the free-electron and Eckstein® Fermi surfaces
contain terms which in the jellium derivation
arise from collision drag!! even though collision
drag never entered the deformation-potential cal-
culation.

In Sec. II of this paper we derive the attenuation
for the geometry of Fig. 1 and in Sec. III we pre-
sent the numerical calculations and give physical
explanations for the peaks and dips appearing in the
calculated curves.

II. ATTENUATION WITH BRAGG REFLECTIONS

We here calculate the attenuation of an acoustic
wave using the FED method of Ref. 5 (hereafter
called I). It should be pointed out that our Fermi
surface of Fig. 1 is somewhat unphysical in that
the energy gap is assumed to be sufficiently large
that there are no occupied states in the second
Brillouin zone but the crystal potential is suf-
ficiently weak that the Fermi surface in the first
zone is completely free-electron-like except for
the Bragg planes. However, once given this
free-electron-like Fermi surface, the FED ap-
proximation becomes exact. From Eq. (I5) we
have for the deviation of the electronic distribution
function from equilibrium'?

t 9 5, - - ~ .
f1=[ 3ng (eé"-v’+iw€’:D’)e'“" )/Tdt',

(1)

where & is the electric field induced by the elec-

R —
(a) (b) (c)
FIG. 1. (a) Free-electron Fermi surface truncated by

the six Bragg planes of a simple-cubic Brillouin zone.
(b) Orbit of a Bragg-reflected electron. (c) Identical or-
bit shown as hole orbit.
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tron’s response to D, the deformation-potential
tensor, € is the acoustic strain tensor, 7 the
electron relaxation time, and primed quantities
are evaluated at ¢’. In the FED [Eq. (I9)] we
have

> e

€:D=-Wk-€-7, (2)

where l‘{ and V are the electron’s wave vector and
velocity. Using € = 8%/0F =¢Uq where the ionic
displacement fi=7u.e'@F 9" we have from (112)
and (I15)

-

8§'-V'=v,[8,cos@ T -Q,t'-¢')
+8_cos(@-T'-t'+9")], (3)
€D = -ithv,qkvfcos@ T -Q,t -@')
+cos(-T'-Qt'+¢")], @

where Q,=wztw,, @' =¢-wit-n(T+Ap/4), and
w,=eH/mc. ¢ is the azimuthal angle of k(#) and
n the number of Bragg reflections a hole has
suffered between ¢ and ¢’. Note from Fig. 1(b)
that the phase angle is increased by 7+3A¢ on
each Bragg reflection. * In Appendix A we per-
form the integration over ¢’ and obtain

9
fi= a% T (08, + wmqu,ul)(1 - Qe st/
+

x ei(i-r-wt*w ), (5)

where ¢, is the time at which the hole executed its
last Bragg reflection,

d,=1+i(qu,- Q)T , (6)
eﬁ‘A0/4+1
Qu= RT3 w;7 ;1 (holes), (7

Q.=0 (electrons),

(8)
éz(%ﬂ—A¢/4) )

and a sum over (+), i.e., over both senses of
circular polarization, is implied in (5). Thus
the distribution function for holes is the sum of
two terms; the first is identical to the distribution
function for electrons and the second is due to the
effect of Bragg reflections.

The next task is to evaluate §,. The electronic
(and hole) current is obtained from

J=-202m%e [ Vf,d*k (9)
in Appendix B:
. 2eTm

2 .
v
EN XA
£

I GmT 3r

) ( f”f F k) k= b f g% F,(k.)dk,)]

-20(8.6,- M 1-0,60), (0

where
Fu(k)=(1-08¢/2m) + (2w,7/7d,) Q (e+* "= 1) ,
(11)
bo=1-iQ,7, (12)
o,=e%TN,/m , (13)
No=(m /208 [ v3ko) F (ko) dE, (14)

G,= | W3/d)F (k) dk,/ [ vV3F (k) dk, . (15)

Note that F,(k,)=1 for electrons. Note also that
if there is no magnetic field w,=0 and

N,=m?(2mn) %[ 31 - Ap/2m) dk,

is just the effective number of electrons and holes
and o, is the ordinary dc conductivity. In this
case the carriers do not precess (and hence do
not Bragg reflect), and there is no distinction be-
tween the electrons and holes insofar as their
contribution to the conductivity is concerned.
From Maxwell’s equations we have?

8*24_'”_1' <£{)2]t ) (16)

w c

where v, is the velocity of the acoustic wave.
Eliminating j, between (10) and (16) we have

g, lomu 1-b,G,

21 G,+iB, ’ amn
where
w c 2
= > . 18
b= (o) (18)
The distribution function then becomes
fF%- IMWY, U, 1+ib.,=[3,E N d*)
9E 2, G,+1iB,
x[1- Q,e"’*("'l)/f] gt @F-wtze)  (1q)

The total electronic excitation energy due to the
acoustic wave is given by (I131):

E=(2m)®[ f 30t d% (20)
where J, is just f,, with the factor 8f,/8E missing.

Using (120), d*k=mh2dgodk,dE, and df,/3E
= - 0(E — Eg), one obtains
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1+ib,B,

po__m wmu, )2[1}2 ( 11+ib,B,|2
T 2(21)°n 2 2 L \1G,+iB,1%1d,|?

T d,(G,+iB,)

1- ibtpt )
- arGr-gn L

*
X [1-e sttt — e I T Qs o7 T Q, |2 dg dk, . (21)

Noting that 1/1d,1%= Re (1/d,) this may be written

2 . 2 2
m wmu I1+ib,B,I [ vy PRENIE;
- == (1= dodk
E= 2w ( 2 ) Re{m,nﬁu‘ a, 17 Q) dodk,

2 * 1+ib,B v? (e
v - T - -t/ T d, (t-t. )/
o[ 5 emsnng,ro ety oadvat. ~egif] [ fa-enenresaon,

2 *
v - - - -
+f L([e a4/ 7 @ |2 o a4t/ QX ) a0 gk, ]

d.

*
+[Uf (1 _e-d*(t-tl)/ TQ*)d¢dk'+/vf(i_e-dg(t-tl)/-rQAa_e-d* (t-tl)/-rQI)d(pdk‘} . (22)

We note that the entire ¢ dependence of the inte-
grand is in (¢-¢,), which may be replaced by ¢/w,
and integrated over 0< ¢ <@ in each of the four
sections of the hole orbit; for electron orbits there
is no ¢ dependence and the ¢ integration yields a
factor of 27. Performing the integration and

using (7), the second term in the first set of square
brackets can be shown to be pure imaginary and
thus not contribute to E. Finally one has

E_mw ﬂ 2
'2(2n)< 2)

. 2 .
xRe{N*[M*—L—G*—ZI—iZ—b—ﬁ*—G*+1]

|G +1B,| G,+iB,
, 1+1ib,B, ,
+N*[_2—-—G*+iﬁ, G, +1]} , (23)
where
N{= (m/2m) [ F!(k,)vidk, , (24)

G1= ([ @3 /d)F (k) dk,)/ [v3F (k)dk, , (25)
and
Flko)=20,7[(2Q2/a(es */ %"= 1) - |Q,|?
x(e2®“T_1)]. (26)

This excitation energy is converted to heat with

a time constant 37. Dividing by the incident-
phonon energy flux Mw?(3u,)?v, where M is the
density of the metal, we obtain for the attenuation
coefficient

oM
* Muvgr

[

11+4b,8,2 1+ib,B, )
X Re[ N,( W G,-2 ——w* G,+1

, 1+14b,B, ,>
+N*(1—2_—G*+i3* G/ . (27

It was assumed in I that 8 is negligible; this cor-
responds to nearly perfect screening of the ionic
current (in the lab frame) by the electrons or holes
and is valid except for very high frequency, very
large magnetic field, or when K/2kr—~1/V3 so

that there are only a few carriers. Thus we have

. 1 ' Gi
a,x Moot ReI:N,( G. —1)+N*(1—ZG, )] .

(28)

The first term in (28) looks like the result for a
spherical Fermi surface; however, the Bragg re-
flections have completely modified N, and G,.
N_is no longer the density of electrons although
at zero field (when no Bragg reflections occur) it
is the effective density of electrons. At finite
fields it loses even this property and becomes a
complex quantity. Similarly at zero field G, is
like the free electron G, but is calculated only
from the free part of the Fermi surface. The
second term which vanishes at zero field is due
completely to Bragg reflections.

III. RESULTS AND DISCUSSION

We have numerically evaluated «, from Eq. (27)
neglecting w in comparison with w, (which is
valid for all but the smallest magnetic fields and
makes a,=a_). Note that the entire #, dependence
of the integrand arises from v,, v,, and Ag. 13
The a-vs-y=w,/quyr curves are displayed in Figs.
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[ v

T ! T

(a) 7

(b)

FIG. 2. (a) and (b) Attenuation con-
stant in arbitrary units vs y=w,/qVr
for several values of K/2kp.

2(a) and 2(b) for several values of K/2kp with
qupT=50. Interesting structure occurs when there
are a large number of electrons and a few holes
(K/2kp slightly less than unity) or when there are

a large number of holes and a few electrons
(K/2kp slightly larger than 1/v2). In Fig. 3 we
repeat the attenuation curve for K/2kg=0.98 and
compare it with the attenuation when the holes
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FIG. 3. Comparison of the attenuation when K/2kp
=0.98 (solid curve) with that for the full Fermi sphere
(long dashes) and with the attenuation when K/2kp=0.98
but with the hole orbits absent (short dashes).

are completely absent, i.e., for a Fermi surface
consisting of two spherical electron caps with
0.2< |k, <1 and also with the attenuation for the
full spherical Fermi surface, i.e., for K> 2kg.
We note a huge peak at w.=0 and a large dip
centered at w, /qup=0.17 for the electron-cap
Fermi surface. This can easily be understood
as follows. The electron attenuation is propor-
tional to N%/G where G =G/N [see Eqs. (14) and
(15)]. Now G is contributed to almost entirely
by electrons which obey the resonance condition
qv.=w, which makes the imaginary part of d in
Eq. (6) vanish. Thus for small w, the resonant
electrons are absent and G is extremely small.
For large w, the resonant electrons are present
and G is almost identical to its value for the full
electron sphere. On the other hand, N is indepen-
dent of w, and is reduced from its value for the full
electron sphere. Thus the behavior of N2/G ex-
plains this attenuation curve.*

Whereas in Fig. 3 we showed the attenuation
when the holes were completely absent, in Fig.
4 we show the attenuation due to only the holes
and also the attenuation which would be obtained
if those same holes were electrons, i.e., ne-
glecting the effect of Bragg reflections. Because
of the missing part of their orbits Ag, the holes
execute an orbit in less time than electrons and
according to Fig. 1(c) with an opposite sense of
rotation so that one would expect the resonance
condition to be

- W

- 1-A¢/2m (29)

qUe= W,

If one follows the Bragg-reflecting electron around
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Fig. 1(b) as well as the phase of the Doppler-
shifted acoustic wave with which it is resonant,
one sees that they are in phase over two of the
legs of the orbit and out of phase over the other
two, so one would expect the absorption due to
holes to be less than that due to electrons, as
Fig. 4 indeed shows. Furthermore, one might
expect harmonics of this resonance to occur.
This resonance and its harmonics can be traced
back to peaks in @, which occur when the imag-
inary part of the argument of the exponential in
Eq. (7) is equal to an odd integer number of .
This occurs when

que= (_ l)n(zn - l)we ’ (30)

where 7 is a positive integer. Since for the ex-
tremal hole orbit v,=0.2vp and w,= - w,, the at-
tenuation vanishes when w,/qvg >0.2, i.e., when
there are no holes which can satisfy the resonance
condition. When w,/qup<0.2/(2n - 1) there are
holes with » different values of v, which satisfy

n different odd harmonics. Thus in Fig. 4 we
show points numbered between 4 and 0 such that
if w,/qur lies between two points, the number

on the left is the number of harmonics satisfied.
The total absorption for K/2kp=0.98 can then be
understood as a combination of the absorption of
the holes alone and of the electrons alone.

When K/2k is just slightly larger than 1/v2,
there are two small slabs of electron Fermi sur-
face with v,+v,/v2 and a large hole section of
Fermi surface with v, lying between the electron
values of v,. If w,/qug is greater than 1/V2 then
both the electrons and holes are all below resonance

FIG. 4. Attenuation due to the holes alone when K/2k
=0.98 (solid curve) and due to those same holes but ne-
glecting their Bragg reflections (dashed curve). The
numbered arrows indicate that point below which an odd
harmonic of the resonance condition is satisfied by the
holes.
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and G, is small [where Re(1/G)=G,/(G¢+GZ)]. The
sign of G, is opposite for the electrons and holes.
Although there are many fewer electrons than
holes, the electrons are closer to resonance (be-
cause of their larger v,) and the electron and hole
contributions to G, are of the same order of mag-
nitude. For some particular value of w,/qup,
they will have exactly the same magnitude and

G, will vanish, causing a peak in Re(1/G). The
fewer the number of electrons, the closer they
must be to resonance for G, vanish, i.e., the
closer w,/quy must be to 1/vY2. This explains

the peaks centered at w, /qur=0.76 and 1. 25 for
K/2kp=0.71 and 0.72. The very sharp peaks

both curves have at w,=0 are due to the very
small number of v,=0 resonant holes. When K/2ky
~1/V2, A@(k,=0)~ 27 and the k,=0 holes disap-
pear altogether. This peak, caused by a reduction
in the number of resonant carriers, corresponds
closely to the dip in attenuation found by Eckstein®
when the number of resonant electrons on her
Fermi surface was singular.

Although our simple-model Fermi surface does
not reproduce the magnetoacoustic attenuation of
the complicated copper Fermi surface, we have for
the first time shown how the introduction of Bragg
planes to create hole orbits can lead to peaks in the
attenuation and hence have made theory and ex-
periment at least compatible.

APPENDIX A

We here perform the integration over ¢’ in Eq.
(1) for holes (the integration being trivial for
electrons). Replacing the cosines in (3) and (4)
by exponentials, we obtain integrals of the form

|

G

: N R _ e
— ptise /4 (1+e d,T/ mAwH) 1(eit(qv, Q)70 ' 1-(t-t )/ T

=(r/d,)e’

(@’ F-wtFo )[1 _

| W

’ tl !’ 1 ’ t ’ ’ ?
Joxt @nat’ =[x’ oNat+ [, xt, oMt
(A1)
where
X(t’, q0l)=ei[(qi.v,-ﬂt)t'*«‘']-(t-t')/"’’ (AZ)

and ¢, is the time at which the last Bragg reflec-
tion occurred for the hole whose phase is ¢ at
time {. Now

f_:l x(t’,<p’)dt’=f_:2x(t’, <p’)dt'+ft;‘ X', ¢")at’

:f_‘l X[t =T, @" = (n+Ap/4)]dt"

flx(

t2

,@')dt', (A3)

where
T=t,—t,=(G1-0¢/4)/w, (A4)

is the time between successive Bragg reflections
and (7 +A@/4) is the phase shift due to a Bragg
reflection [see Fig. 1(b)]. Thus we have

I G AL

_(1+e.¢ T/uiAw/4 f’l X', @")dt’,

where d,=1+i(quv, - ,)7. Substituting (A2) and
(A4) into (A1), using T=&/w, and the fact that

@' during the period (¢,, ¢,) is less than ¢’ during
(¢,, ¢) by a Bragg jump of 7+ A¢/4, we have

dt, (T/d [i[(qu,-Q*)tW']_ei[(qv,-ﬂi)tﬁw’]-(t-tl)/1'

et Rt T 1 (bt )/ 7))

eds(t1-t)/ T _ side /4(1 4+ o 92/ wo T /4)-1 (ea*(tz-t)/r — elslty-t )/1)]

_ (T/d*)eg(q.f-wgw )[1 -Q 4 etioe /4)(1 +e-d*°/uc-r*mo /4)-1ed*(tl-t)/-r] , (A5)

whence we obtain Eq. (5) immediately.
APPENDIX B

We here derive the spherical components of the
electronic current j, =j,+#j, from Eq. (9) using
d*r=mn2dedk,dE and

nr/2+®

ffuva‘d(Pa 2

ne/2

v,= v, £ 50,=v,e*"" (B1)
Noting that f,, is proportional to (1 - @ e™+!#-t1/T)
xe* and that w,(t - #,)= ¢ — nr where n=0, 1, 2,
and 3 for the four sections of the hole orbit, we
find

g2t (1 — Q*e-d*(w -mlz)lwcf)d(p
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n=0 r/2

where & =47 — A@/4. Thus the Bragg reflections
do not mix the two senses of circular polarization
and we have

ju=22n)emi? [ v, f,dodk, (B3)

where we have integrated over dE and the 3fy/9E

= - 6(E — Eg) factor in f;, causes the dodk, integra-
tion to be restricted to the Fermi surface. Sub-
stituting (5) in (B3) and noting from (6) and (12)
that qv,/d,= (1 -b,/d,)/T we have
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i nr/2+® i} @ ) ot/
- f g2t do - g2t '"'/2)Q,e' 00T g’ = 0,
n n=0 0
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(B2)

()]

x [1-Q.e ' "dpdk, , (B4)

r

. _2tem —1~fv2 eb, _imwu,
Is= rn)? or | @, e

where we have dropped a factor of ef ™%’ The
entire ¢ dependence of the integrand is in (¢ -¢,),
which may be replaced by ¢/w, and integrated
over 0L < & in each of the four sections of the
hole orbit (for electron orbits there is no ¢ de-
pendence and a factor 27 is obtained from the ¢
integration) to yield Eq. (10).
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Oconsider, for instance, an intrinsic semiconductor.
The current associated with a long-wavelength phonon is
negligible because the valence electrons follow the ions
in their motion even though those same electrons give no
contribution to the zero-frequency conductivity.

I1Besides the usually negligible contribution mentioned
above collision drag also enters the jellium calculation
through the distribution function.

2we have corrected an unimportant sign mistake in
(I5).

3From Figs. 1(a) and 1(b) one easily sees that A¢/4
=2cos"'(K/2k,), where k?=k% k2.

4The —1 in N(1/G —1) is important only for large fields
where it makes the attenuation approach zero.
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The density-matrix approach due to March and his collaborators is used to obtain the elec-

tronic density of states of liquid metals.

A model potential is used for liquid aluminum, and

the density of states is calculated for both completely random and correlated systems. Re-
sults are compared with previous calculations, and nearly-free-electron-like behavior is

found for liquid aluminum.

I. INTRODUCTION

In recent years the study of electronic states in
liquid metals! has received considerable attention.
The effort has been mostly directed towards de-
veloping formal techniques for tackling the prob-
lem of cellular disorder. There have been rather

few attempts to evaluate the theoretical expres-
sions numerically for real systems.

Ballentine® has calculated the density of states
in several liquid metals by using the Green’s-func-
tion method of Edwards.® He used a local energy -
independent Heine-Abarenkov-type potential. Bal-
lentine used Edwards’s theory but replaced the



